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Abstract We study p-Brauer characters of a finite group G which are restrictions of generalized characters vanishing
on p-singular elements for a fixed prime p dividing the order of G. Such Brauer characters are called quasi-projective.
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quasi-projective. The exponent a(¢) only depends on the Cartan matrix of the block to which ¢ belongs. Moreover
p(#) is bounded by the vertex of the module afforded by ¢, and equality holds in case that G is p-solvable. We
give some evidence for the conjecture that a(¢) = 0 occurs if and only if ¢ belongs to a block of defect 0. Finally,
we study indecomposable quasi-projective Brauer characters of a block B. This set is finite and corresponds to a

minimal Hilbert basis of the rational cone defined by the Cartan matrix of B.
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1. INTRODUCTION

Throughout this paper let p always denote a prime and let G be a finite group. By
Irr(G) resp. Irr(B) we denote the set of ordinary irreducible characters of G resp. of
a p-block B, and by IBr,(G) resp. IBr,(B) that of irreducible p-Brauer characters
with respect to a p-modular splitting system. We put {(B) = |IBr,(B)|. Finally, we
write @, for the ordinary character associated to the projective cover of the module
corresponding to ¢ € IBr,(G). If x is a generalized ordinary character of G, then x°
denotes the restriction of x on the set of p-regular elements.

Quasi-projective ordinary characters A, i.e., ordinary characters A of the form
A =3 e, (c) 4 Pp With a, € Z have been studied in [15]. Here we consider the

analogue for p-Brauer characters where we often suppress the underlying prime p.
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Definition 1.1. A Brauer character ® of G is called quasi-projective if
o= Y a,® witha, €Z.
@€IBry(G)
We call @ projective if a, > 0 for all ¢ € IBr,(G), i.e., ¢ is the Brauer character of a
projective module.

Note that ZWGIB%(G) a, P, with a, € Z is a generalized ordinary character which

vanishes on p-singular elements and vice versa (see [11, Theorem 2.13 and Corollary
2.171]).

Due to Dickson’s Theorem [11, Corollary 2.14] the p-part |G|, of the order of G
divides the degree of any quasi-projective Brauer character.

In order to study arbitrary quasi-projective Brauer characters the following defini-
tion is useful.

Definition 1.2. A quasi-projective Brauer character ® is called indecomposable
quasi-projective if it can not be written as
q) == @1 + q)g

where the ®; are quasi-projective and not zero.

Observe that an indecomposable quasi-projective Brauer character always belongs
to a block (see for instance [4, Ch. IV, Lemma 3.14]).

Whenever we need an explicit Cartan matrix of a particular block B we use the
information given in [10]. The computation of a(y) for ¢ € IBr,(B) is mostly carried
out with the software package 4ti2 (see [6]).

We would like to mention here that there is some overlapping with results of an
unpublished paper of Zeng [16] written in Chinese.

2. QUASI-PROJECTIVE BRAUER CHARACTERS

Let B be a p-block of G with Cartan matrix C' and let ® = Z‘pelBrp(B) a, P, with

a, € Z be a quasi-projective Brauer character of B. If we put a = (ay).cp as a
column vector and use the symmetry of the Cartan matrix, we get

¢ = Z@EIBrp(B) a,®;

Z@EIBrp(B) Gy ZzpeIBrp(B) Cop¥
= ZwGIBrp(B) (ZcpeIBrp(B) Cw,w%)@/%

where (D oCTB(B) Cy p0y) 1s the entry in C'a at position ¢. Thus @ is a quasi-projective
Brauer character if and only if Ca > 0.

Theorem 2.1. Let B be a p-block of G of defect d.
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a) For each ¢ € IBr,(B) there is a minimal p-power, say p™®) with 0 < a(p) < d
such that p®¥) ¢ is a quasi-projective Brauer character. Obuviously, p™#) ¢y is
an indecomposable quasi-projective Brauer character.

b) If ny is quasi-projective for ¢ € IBr,(B) for some n € N, then p*¥) | n.

c) For all p € IBr,(B) of height zero we have a(p) = d.

d) If pi < ... < pli1 < ph = pd are the elementary divisors of the Cartan
matrix C of B, then there exists a labbeling of the irreducible Brauer characters
of B such that d; < a(p;) for alli=1,... 1.

Proof. a) Let e, denote the column vector which has a 1 at position ¢ and zeros
elsewhere. Solving Ca = e, via Cramer’s rule we see that each entry a, in a is a
quotient 2=, where b is the determinant of an (I — 1) x (I — 1) submatrix of C.
Since det C' is a power of p [4, Ch. IV, Theorem 3.9], we may choose a minimal
a(p) € Ny such that p*®a € Z!. In particular Cp*¥a = p*®le,. This shows that
p“(“’)w is a quasi-projective Brauer character.

To see that a(p) < d for all ¢ € IBr,(B) we argue as follows. Let p®, p®, ... ph =
p? be the elementary divisors of C where d; < ... < dj_; < d; = d (for the last
inequality see [4, Ch. IV, Theorem 4.16]). Since [['_} p% divides the determinant of
every (I —1) x (I — 1) submatrix of C, we get -~ € #Z. This shows that a(p) < d
for all ¢ € IBr(B).

b) The assertion follows immediately from the proof of part a).

c) If ¢ € IBr,(B) is of height zero, then (1), = %. Since p“¥) is quasi-projective
by part a), we obtain
. pa(¢)|G|p

Gy | p*Po(1), = P

It follows that d < a(y) and we are done since a(p) < d, by part a).
d) According to a), there exists an integer matrix A such that

pile) 0
CA= 0 . 0
0 0 pre

is diagonal. By the definition of elementary divisors there are matrices P and () over
the integers of determinant 41 such that
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Thus
p—ch 0 0 pa(sol) 0 0
QA= o . o |P'l o . o0
0 0 p* 0 0 pa(w)

Note that P! is a matrix over Z. Therefore we may write P! = (z;;) with x;; € Z
and we get

xllpa(¢1)_dl $12pa(@2)_d1 . a’:llpa(SDl)_dl
QA= Loy PP pappleR) =z gy pele)
l-llpa(%)—dl xl2pa(¥72)—dl o x”pa(w)—dz
Since p { det P~ there exists a sequence (1,4;), (2,42), ..., ([,i,) where the i; form a

set of size [ such that
b )f L1, X249 * * * Tli; -
This implies a(y;,) > d1, a(pi,) > da, ..., a(y;) > d; and the proof is complete. O

Definition 2.2. For ¢ € IBr,(G) we call p2*) the Hilbert divisor of .

The name Hilbert divisor has been chosen since p®¥)¢ corresponds naturally to
an element in the (unique) minimal Hilbert basis defined by the cone of the Cartan
matrix of the block to which ¢ belongs (see Section 4). As the proof of Theorem 2.1
a) shows we may find for any Brauer character 5 in B a minimal p-power p®®such
that p*® g is quasi-projective. However, p®# 3 corresponds natuarally to an element
of the Hilbert basis if and only if p*®) 3 is indecomposable quasi-projective (which is
in general hard to test).

As an immediate consequence of Theorem 2.1 we get a strengthend version of a
Theorem of Brauer for irreducible Brauer characters (see [4, Ch. IV, Theorem 1.2]).

Corollary 2.3. If ¢ € IBr,(B), then ¢ defined by
a(e) ; ' )
oy p"¥e(x), if x is a p’-element,
Plr) = { 0, otherwise

is a generalized character of B.

Remark 2.4. One can not do better in Corollary 2.3. If we choose n(¢) € Ny
minimal such that

n(p) if i ’
v pWo(x), if zis a p-element,
Plr) = { 0, otherwise

is a generalized character, then ¢(z) = >, g, (5) @w®y with complex numbers
ay, by [11, Theorem 2.13]. However, the coeflicients a, are even integers since
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ay = (P, ¢)° = (p,7) and ¢ is an integer linear combination of ordinary irreducible
characters restricted to p-regular elements (see [11, Corollary 2.16]). This shows that

n(p) = a(p).
Corollary 2.5. If C~! = (¢#¥) is the inverse of the Cartan matriz C, then ¢ =
(p,0)° >0 for all p € IBr,(G).

Proof. We may assume that C'is the Cartan matrix of a block B. By Theorem 2.1,
we have Z%IB%(B) ap®, = p@y, hence Ca = p?¥e,. Since C is positive definite,
we obtain

0<a’Ca= p“(“’)acp,
hence a, > 0. The entry a, in a is equal to the entry at position ¢ in a = C~'Ca =
p*®)C~te, which is p*¥ %, hence ¢#¢ > 0. Finally, note that ¢#* = (i, ¢)°, by [4,
Chap. IV, Lemma 3.7]. O.

Examples 2.6. a) Let G = Aj be the alternating group on 5 letters and let By be
the principal 2-block of G. The elementary divisors of the Cartan matrix of By are
4,1,1. The Hilbert divisors 2#) for ¢ € IBry(By) are 4,2, 2.

b) Let G = A4 be the alternating group on 4 letters and let By be the principal
2-block of G (which is the full group algebra). Note that the defect group of By is
a Klein four group as in a). The elementary divisors of the Cartan matrix are again
4,1,1, but the Hilbert divisors 2%() for ¢ € IBry(By) are now 4,4, 4.

For ¢ € IBr,(G) we denote by vz(yp) a vertex of the module in characteristic p

afforded by .
Proposition 2.7. For ¢ € IBr,(G) we have p*®) < vz (p)|.
Proof. According to Remark 2.4 it is sufficient to show that

v | |vz(p)|e(z),  for x a p-element,

Plr) = { 0, otherwise
is a generalized character. By a result of Brauer ([4], Chap.IV, Theorem 1.1), we may
prove that @|g is a generalized character for any elementary subgroup E of G. Let M
be the module afforded by ¢ and let V = vaz(M) = va(yp). Clearly, M|p = &5 M,;
with indecomposable F-modules M;. We denote by ¢; the Brauer character of M;
and by V; its vertex vx(M;) < V. Since E is an elementary group we get by Green’s
indecomposable theorem [8, Chap. VII, Theorem 16.2] that M; = NF, where N; is
an indecomposable module for the group V; x Q. Let ¢; be the Brauer character of
N;. Thus, if v; = |V;] and v = |V, then ¢|p = > p" "¢F where

~  vii(x), for x a p’-element,
Yilz) = { 0, otherwise

Note that 1); is the sum of irreducible Brauer characters of V; x @, say v, ; for

j =1,...,n;. Since an irreducible Brauer character of V; x @) is of height zero, we
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get v; = p®¥is) for all j, by Theorem 2.1 c). Therfore 1@ is a generalized character
according to Corollary 2.3. It follows that ¢|g is a generalized character and we are
done. 0J

Proposition 2.8. Let G be p-solvable. If ¢ € IBr,(G), then p®¥) = |vx(p)|. In
particular, ®,(1) = p*©p(1).

Proof. By Proposition 2.7, we have p®®) < |vx(¢)|. Furthermore, |G/, | p*© (1)

since p**®) (1) is quasi-projective. The p-solvability of G implies ¢(1) | |JIG(|£)‘, hence
| | | pa(w)’GLD
" o (p)]

which implies |vz(p)| < p®¥) and we are done. O

We would like to mention that the assertion of Proposition 2.8 does not hold in gen-
eral as Example 2.6 a) already shows. Note that the vertices of all simple modules in
the principal 2.block of A have order 4, but for the Hilbert divisors we only get 4, 2, 2.

Furthermore, the condition p*¥®) = |vz(p)| for all ¢ € IBr,(G) does not imply
in general that G is p-solvable. As an example the group 7% : 2.L,)7).2 mod 7 may
serve.

Lemma 2.9. If B is a p-block of a p-solvable group with I(B) > 1, then c,, < p*¥).

Proof. According to Proposition 2.8 we have ®,(1) = p*®p(1). The condition
|IBr,(B)| > 1 implies that there exists ¢ # ¢ € IBr,(B) with c,, # 0. Since
Cop < Jvz(p)] according to [5], the degree of ®,, forces c,, < |vr(p)| = p2¥). O

Proposition 2.10. If B is a p-block with a cyclic defect group of order p?, then
a(p) = d for all € IBr,(B).

Proof. First we consider the case that the Brauer tree is a star with e edges and
exceptional vertex in the center with multiplicity ]‘%. In this case the Cartan matrix
C of B is of the form C' = (u + duy)pperpr,(B) Where p = 1% and e = [(B). In
particular, det C' = e 4+ 1 = p?. If e = 1, the assertion is clear, by Theorem 2.1. If
e > 1, then for ¢ # ¢ € IBr,(B) the entry at (¢,%) in C~! equals :I:# =+5

where 1 and p? are coprime, and we are done again.

To deal with the general case let D be a defect group of B, D; < D of order p and
Ny = Ng(Dq). According to [1, section 14, Theorem 3], there exists a block by of NV}
with defect group D such that B = b¢. Morover, the correspondence between the
irreducible modules V' of b; and Uof B is given by

Ve=UeP, Uy=VaW, (1)
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where P is a projective G-module and W is a direct sum of a projective N;-module
and modules lying in blocks different from b,. By [1, section 14, Theorem 2], the
Brauer tree of by is a star with e edges and exceptional vertex in the center with
multiplicity I%. Thus, according to the first part of the proof, we have a(y) = d for
all ¢ € IBr,(by). If ¢ € IBr,(B) corresponds to ¢ € IBr,(b;), then by (1) we have

Yl =+ V¥ +A (2)

where WU is the character of a projective module and all constituents of A belong
to blocks different from b;. Note that p®¥)|y, is quasi-projective and a(¢)) < d.
By (2), it follows that p®¥)¢ is a quasi-projective Brauer character of by, hence

a(®) = a(¢) = d. 0

Remark 2.11. According to Proposition 2.8 we have p®¥) = |vx(yp)| for all ¢ €
IBr,(G) provided G is p-solvable. Unfortunately, the converse does not hold true.
For instance, we may take a simple non-abelian group with a cyclic Sylow p-subgroup.
Then, by a result of Erdmann [3], the vertices of all ¢ € IBr,(B) coincide with the
defect group of the block B. On the other hand, by Proposition 2.10, we have
a(p) = d if d is the defect of the block to which ¢ belongs.

Proposition 2.12. Let B be a p-block of G of defect d. Furthermore, suppose that
¢ € IBr,(B) with height ht(y). Then the following are equivalent.

a) a(p) =ht(p) =0.
b) d =0, i.e., B is of defect 0.

Proof. Assume that a) holds true. According to Theorem 2.1, the assumption ht(p) =

0 implies a(¢) = d. Thus d = 0, by assumption. The converse is obviously true.
O

Remark 2.13. Let ¢ € IBr,(B) where B is a p-block with defect group D and defect
d. Suppose that a(¢) = 0 and ht(p) # 0. Then we have

a) ht(p) > 2.
b) If ht(p) = 2, then d = 2, D = C,, x C,, and p odd.

Proof. Let |G|, = p®. Since p® | p(1), = p*~41#) we have ht(p) > d. If ht(p) = 1,
then, by Proposition 2.12, we have d = 1. Thus D is cyclic of order p and a(y) =
d =1, by Proposition 2.10.

b) As in a) we have d # 0. If d = 1, then p**!' | (1), contradicting the Theorem
in [12]. Thus d = 2. Note that D can not be cyclic. Furthermore p = 2 does not
occur, since by [2], B is Morita equivalent to KD, KAy or By(K As) where K is an

appropriate field of characteristic 2.
O
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Due to Proposition 2.8, Proposition 2.10 and many other examples we may state
the following conjecture.

Conjecture 2.14. (Hilbert divisor Conjecture) Let B be a p-block of G. If
a(¢) = 0 for some ¢ € IBr,(B), then B is a block of defect 0. In other words: If
¢ € IBr,(G) is quasi-projective, then ¢ is the character of an irreducible projective
module.

Proposition 2.15. Let C~! = (¢?7) denote the inverse of the Cartan matriz of a
p-block B. For ¢ € IBr,(B) the following are equivalent.

a) a(y) = 0.
b) ¢#* = (¢, \)° € Z for all X € IBr,(B).

Proof. If 3 e, (5) @ Py = ¢ with ¢ € IBr,(G), then

Zoax=( Y ap@u)) = (@, 1) =
$€IBry(B)
for all A\ € IBr,(B). Conversely, suppose that ¢** € Z for all A € IBr,(B). By
Theorem 2.1, we have Z¢€IBrp(B) ayp®y = p*Po with a, € Z. 1t follows

ay = ( Z ay®y, \)° = (paﬂp)% A)° = i)
$EIBr, (B)

Thus p»®) | ay for all A € IBr,(B) and we get ZweIBrp(B) p%ﬁ,)@;} = 0. O

Remark 2.16. Let B be a p-block of G and suppose that a(¢) = 0 for some ¢ €
IBr,(B). According to Corollary 2.3 the map ¢ defined by

oy (), for x a p’-element,
Plr) = { 0, otherwise

is a generalized character of B. The Conjecture 2.14 says that ¢ is even a character.

Recall that the exponent exp(G) of a finite p-group G' (p a prime) is the maximal
order of an element in G.

Examples 2.17. a) The principal 2-block By of the alternating group Ag has three
irreducible Brauer characters of degree 1,4,4. The vertex of the 4-dimensional char-
acters are Klein four-groups, hence of exponent 2. The Hilbert divisors 24¥) for
¢ € IBry(By) are 8,2,2.

b) The principal 2-block By of the simple Mathieu group M, contains three irre-
ducible Brauer characters of degree 1,10, 44. All of them have a Sylow 2-subgroup as
vertex (see [13]). Thus exp(vz(p)) = 23 for all ¢ € IBry(By). One computes 26,25 24
for the Hilbert divisors 2¢(#).
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¢) Let G = Sz(8) be the smallest Suzuki group and let p = 2. For the inverse of the
Cartan matrix C' of the principal 2-block we obtain

55 _9 _9 _9 _1 _1 _1
64 16 16 16 4 4 4
9 7 1 1
% 1 1 —3 L 1 0
9 1 7 1
% —1 1 —1 L 0 -l
-1 __ 9 1 1 7
¢"=1-% -2 -1 31 0 -1 1
L1 1 0 2 0 0
~L 10 -1 0 2 0
- 0 -1 1 0 0 2

This shows that for the Hilbert divisors 24¥) we have 26, 2% 2% 2% 22 22 22 According
to a well-known result of Dipper [7, Section 8.9, Theorem| the Sylow 2-subgroup S
of G is the vertex of any ¢ € IBry(By). Furthermore exp(S) = 4.

Based on many further examples, on blocks with cyclic defect groups or blocks of
p-solvable groups one is tempted to ask the following.

Question 2.18. Let B be a p-block and let ¢ € IBr,(B). Do we always have

P > exp(va(p))?
Furthermore, the following problem might also be of interest.

Question 2.19. What can we say if a(p) = d for all ¢ € IBr,(B) where d denotes
the defect of B? It happens, for instance, if the defect group is cyclic (see Proposition
2.10).

Warning: It does not imply that the defect group of B is abelian as the principal
2-block of PSL(2,7) shows (see Example 4.1 b)), which belongs to the class D(3K)
in Erdmann’s classification of tame blocks. In this class we have a(p) = d for all
irreducible Brauer characters in the block.

Remark 2.20. In contrast to ordinary irreducible characters the condition |G|, | ¢(1)
for ¢ € IBr,(G) does not imply that ¢ belongs to a p-block of defect 0. As an example
we may take G = McL and ¢ € IBry(By) of degree 27 - 7 (see [4, Ch. IV, Some open
problems, page 166]), where By denotes the prinical block. Note that |G|, = 27. A
direct computation shows that a(¢) = 2. Furthermore we get 7,6,6,5,5,5,5 for a(v))
where 1 € IBry(By) and ¢ # ..

3. QUASI-PROJECTIVE BRAUER CHARACTERS AND NORMAL SUBGROUPS

By [4, Ch. III, Corollary 4.13] we know that a normal p-subgroup N of G
is contained in the vertex of any irreducible Brauer character ¢ of G. Moreover
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lvz(p)| = |N|[ve(p)| where ¢ is the Brauer character of the module afforded by ¢
but regarded as a module for G = G/N. Note that NV is contained in the kernel of .

Proposition 3.1. Let N be a normal p-subgroup of G with |[N| = p", |G|, = p® and
G =G/N. If p € IBr,(G), then

a(p) +n —ht(p) < a(p).

Proof. Let B be the block of defect d to which ¢ belongs and let B be the block
of defect d to which ¢ belongs. Note that

P = (1), = p(1), = ) ®)
By [11, Theorem 9.9 (a)], we have
d—d=n+m (4)
where m > 0. Thus equation (3) implies that
ht(p) = ht(p) +m. (5)

Since p*¥)y is quasi-projective we get

Y| p“(“”)cp(l)p — pa(¢)+a*d+ht(<p),

hence
a() > d —ht(p).
By (4) and (5), it follows
a(p) > d+n+m— (ht(p) +m) > a(@) +n — ht(p).
O
Example 3.2. The group G = N : Ag where N <G and elementary abelian of order

24 is a maximal subgroup of My,. We denote by G the factor group G/N = Ag. For
the prime p = 2 the Cartan matrix of G is

80 48 44 12 12

48 30 26 7 7
C=| 44 26 271 8 8 |,

12 7 8 4 3

12 7 8 3 4

and for G we have

8 4400
43200
C=|42300
00010
00001



QUASI-PROJECTIVE BRAUER CHARACTERS 11

(same labeling of irreducible Brauer characters). Furthermore, for a(y) we get
7,5,5,4,4 and for a(p) we obtain 3,1,1,0,0. This shows that a(y) = 4 + a(p)
for all ¢ € IBry(G).

A more challenging example is the following.

Example 3.3. Let G = 35 : 2M5 and let p = 3. Then G consists only of the
principal 3-block and for a(p) where ¢ € IBr3(G) one computes

99,9,098,8,7,7,9,9,9,9,8,8,8,8,7,7,6.

The factor group G' = 2M;, has exactly four blocks and we compute for a(p)
block 1:  3,3,3,3,2,2,1,1

block 2:  3,3,3,3,2,2,2,2

block 3: 1,1

block 4: 0

Thus we get a(y) = a(p) + 6. for all ¢.

Many other examples lead to the same connection between the Hilbert divisors of
G and G = G/N where N is a normal p-subgroup of G.

Conjecture 3.4. If N is a normal p-subgroup of G of order p", then a(p) = a(¢)+n
for all ¢ € IBr,(G).

4. INDECOMPOSABLE QUASI-PROJECTIVE BRAUER CHARACTERS

Let C be the Cartan matrix of a block B with | = {(B) = |IBr,(B)| irreducible
Brauer characters. As we have seen at the beginning of Section 2 we know that
ZwelBrp( ) APy, with a = (a,) € Z' is a quasi-projective Brauer character if and
only if C'a > 0. Let p denote the map

If cone(C) = {a € Z' | Ca > 0} denotes the rational cone defined by C, then its image
under p describes exactly the set of quasi-projective Brauer characters. According to
[14, Theorem 16.4], cone(C') has a unique minimal Hilbert basis which is finite. Its
image under p is exactly the set of indecomposable quasi-projective Brauer characters
which we denote by H,(B). Thus we may call H,(B) the Hilbert basis of B (with
respect to C'). According to Theorem 2.1 we have {p*®¢ | p € IBr,(B)} C H,(B).
Computing H,(B) may be reduced to compute the minimal Hilbert basis of cone(C)
which can be done for not too large parameters by the software system [6].

We start with some examples.
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Examples 4.1. a) The principal 2-block of Ag.23 has two irreducible Brauer charac-
ters, say ¢ and 1 with a(¢) = 4 and a(¢)) = 1. Beneath 2% and 21 there is a third
quasi-projective indecomposable character, namely 8p + 1. Note that the Cartan

matrix of B is given by
16 8
¢= < 8 5 ) '

Hence the splitting of ®, into indecomposable quasi-projectives characters is not
unique since

P, =160 +4 x (2¢) =2 x (8p+ 1) + 3 x (2¢).

b) The principal 2-block By of PSL(2,7) has three irreducible Brauer characters ¢
with a(yp) = 3, 3,3. The Sylow 2-subgroup is a dihedral group of order 2%. There are
21 indecomposable quasi-projective Brauer characters.

¢) The principal 2-block of PSL(2,17) has three irreducible Brauer characters with
a(p) = 4,1,1 where p(1) = 1,8,8. There are exactly 6 indecomposable quasi-
projective charcters.

d) The principal 3-block of PSL(3,3) has 8 irreducible Brauer characters with a(p) =
3,2,2,2,2,3,2,2 where ¢(1) = 1,3,3,6,6,7,15,15. Note that according to a well-
known result of Dipper [7, Section 8.9, Theorem] all vertices coincide with the Sylow
3-subgroup of PSL(3,3) which is extraspecial of exponent 3. There are exactly 847
indecomposable quasi-projective charcters.

Proposition 4.2. If B is a p-block of G with Cartan matriz C, then the following
are equivalent.

a) C = (2,yp™¥)) where ., € Ny.

b) det C' =[] cp,, () P* ate).
c) The Hilbert divisors of 1Br,(B) are exactly the elementary divisors of C.

Proof. Part a) implies det C' > HcpeIBr (B) p™®). On the other hand the proof of
Theorem 2.1 a) shows that there is an integer matrix A such that C'A is diagonal
with entries p®®) for ¢ € IBr,(B). Thus det C'det A =[] B P" @) and we have
det €' < [ erpr,(m) P p®¥). Thus b) is proved.

Suppose that b) holds true. Then det A = 1 and ¢) follows since the Smith normal
form of a matrix is unique.

Finally, part ¢) implies det A = 1, hence C' = diag(p®¥)|¢ € IBr,(B))A~! which
proves a). O

p€IBrp(

Theorem 4.3. Let B be a p-block with Cartan matrix C. Then the following state-
ments are equivalent.

a) Hy(B) = {p"®¢ | ¢ € IBr,(B)}.
b) The Hilbert divisors of IBr,(B) are the elementary divisors of C'.
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Proof. Suppose that part a) holds true. Since C' is symmetric, each column of
C' describes the character of a projective indecompsable module. It is obviously
an Ny-linear combination of indecomposable quasi-projective characters, hence, by
assumption of the characters p®¥® . Thus C has a shape as in Proposition 4.2 a)
and b) follows by Proposition 4.2 c).

Conversely, suppose that b) holds. Let M = @®gcip:,(8)Zp; N = @yecipr,(5)ZP,
and L = €B¢GIBrP(B)p“(¢)Zg0. Clearly, |M/N| = detC. Since det C' is equal to the
product of elementary divisors of C', we get, by the assumption of b),

(M/NI = ] »@.

¢€IBr,(B)
This implies N = L as L < N and |M/L| = H(PdBrp(B)p“(‘P). Now, if 5 € H,(B),
then 3 € L and hence 3 = p®¥ ¢ for some ¢ € IBr,(B). O.

Lemma 4.4. Let B be a p-block of a p-solvable group. Then {p®®¢ | p € IBr,(B)} =
H,(B) implies |(B) = 1.

Proof. By [5], we have c,y < min{|vz(y)|, [ve(y)|} for any ¢, ¢ € IBr,(G). Ac-
cording to Proposition 2.8 we know that p®¥) = |vz(y)| and together with Proposition
4.2 we obtain

Ty V()| = 2oup"? = cpp < min{lva(p)], Jox(¥)[}.

This implies ¢,, = |vz(¢)| which contradicts Lemma 2.9 if | IBr,(G)| > 1.
O

Lemma 4.5. Let B be a p-block with cyclic defect group of order p®. Then {p®®)¢ |
¢ € 1Br,(B)} = H,(B) implies |(B) = 1.

Proof. First note that all x € Irr(B) are of height 0 [4, Ch. VII, Theorem 2.16].
If x is an end point in the Brauer tree, then x° € IBr,(B). Thus, if (B) > 2, then
there are at least two irreducible p-Brauer characters of height 0. Theorem 2.1 ¢)
implies that a(¢) = d for these two Brauer characters . This contradicts Theorem
4.3. O

Conjecture 4.6. Let B be a p-block of any finite group. Then the equality {p™*®) ¢ |
¢ € IBr,(B)} = H,(B) is equivalent to [(B) = 1.

Remarks 4.7. Let B be a p-block of defect d with {(B) = 2. Let IBr,(B) = {¢,¢}.
By changing the notation of the irreducible Brauer characters if necessary, we may
assume that a(y) = d. If a(p) = 0, then H,(B) = {¢, p}.

One easily sees that the Cartan matrix is given by

- a bpd
¢= ( bp? cpd)
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where ac — b*p? = 1 and p does not divide a, b, c. Suppose that b = ¢ = 1, hence
d d
P+l p
C = .
( ptp )
It follows

(6) D drp = =0+ 1) Ay =y =) oty = oy = P
X X

X
Thus
Z(dw - dxw)Q = Cpp = 2oy + Cyy = pl+1—2p" 4+ p? =1
X

This shows that there exists xo such that |dy,, —dyw| = 1 and d,,, = d, for x # xo.
Now

diw = (dyyp £1)* = diw +2d,, + 1

together with the conditions in (*) force d,,y = 0. Thus
|Gl [ (1) | xo(1)

and Yy is of defect 0, a contradiction.

5. A CHARACTERIZATION OF p-NILPOTENT GROUPS

All quasi-projective ordinary characters in a block B are projective if and only if all
irreducible Brauer characters in B are quasi-liftable [15, Theorem 1.4]. The property
that all quasi-projective Brauer characters in B are projective turned out to have an
easy answer.

Proposition 5.1. If p*¥¢ is projective for some o € 1Br,(B), then I(B) = 1.
Proof. For ¢ € IBr,(B), we have
pa(w)<p Z ag®;
BEIBry(B)

with ag € Ny. In particular, ®} = p"p for some € IBr,(B) and 0 < n < a(y).
Clearly 8 = ¢. Since the projective characters @, in a block are connected [8, Ch.
VII, Theorem 12.4] we get IBr,(B) = {¢}. O

Corollary 5.2. All quasi-projective Brauer characters in the principal p-block of G
are projective if and only if G is p-nilpotent.

Proof. This follows immediately by Proposition 5.1 and [8, Ch. VII, Theorem
14.9]. O
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6. FURTHER QUESTIONS AND REMARKS

Question 6.1. Let B be a p-block of G of defect d and let ¢ € IBr,(B). Is it true
that a(p) = d always implies that ht(p) = 07

Clearly the above is true for p-solvable groups and blocks with cyclic defect groups.
Note that very often (but not always) a(¢) + ht(¢) = d. A counterexample is the
group McL for p = 2.

Question 6.2. What does it mean for a block B if p®) = |vx(p)| for all ¢ €
IBr, (B)?

Remark 6.3. Let ® = > 5

Brauer character of a projective module. Then ® = > oEIBr, (G) %"(p is in general not
quasi-projective. As an example we may take the alternating group G = As on 5
letters, p = 2 and for ® the character ®; of the principal indecomposable module. The
coefficients of the indecomposable quasi-projective Brauer characters of the principal
2-block (w.r.t. IBro(By)) are given by (4,0,0),(0,2,0),(0,0,2),(2,1,0),(2,0,1) and
(0,1,1). Note that ®; has coefficients 4, 2, 2.

(G) Qe with p | a, € Ny. Suppose that ¢ is the

Question 6.4. Let pt < ... < ph-1 < p& = p? denote the elementary divisors
of the Cartan matrix of a block B. According to Theorem 2.1 d) we know that

S d; < > petbry () @(). Is it possible to label the irreducible Brauer characters
of B as ¢1,...,¢; such that

d; <a(p;) foralli=1,...,17
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